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We evaluate the percolation threshold values for a realistic model of continuum segregated systems, where
random spherical inclusions forbid the percolating objects, modeled by hardcore spherical particles surrounded
by penetrable shells, to occupy large regions inside the composite. We find that the percolation threshold is
generally a nonmonotonous function of segregation, and that an optimal �i.e., minimum� critical concentration
exists well before maximum segregation is reached. We interpret this feature as originating from a competition
between reduced available volume effects and enhanced concentrations needed to ensure percolation in the
highly segregated regime. The relevance with existing segregated materials is discussed.
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The percolation threshold of a two-phase heterogeneous
system denotes the critical concentration at which global
�long-range� connectivity of one phase is first established,
and is accompanied by a sudden transition of the effective
properties of the whole system �1,2�. Unlike the universal �or
quasiuniversal� behavior of the critical exponents character-
izing the percolative transition, the value of the percolation
threshold is a function of several variables such as the shape
of the percolating objects, their orientation and size disper-
sion, their possible interactions, and the microstructure in
general �3�.

Of fundamental importance for several technological ap-
plications is the possibility of exploiting such a multivariable
dependence to lower the percolation threshold, so to have
long-range connectivity of the percolating phase with the
minimum possible critical concentration. This is the case
when, for objects dispersed in a continuous medium, one
wishes to exploit the properties of the percolating elements,
but still preserving those of the host medium. For example,
low conducting filler amounts in a conductor-insulator com-
posite permit one to obtain an adequate level of electrical
conductivity with mechanical properties of the composite be-
ing basically unaltered with respect to those of the pristine
insulating phase.

In addition to the percolation threshold lowering driven
by the large excluded volume of fillers with large aspect
ratios such as rods and/or disks �4�, the critical concentration
can also be lowered by forbidding the percolating objects to
occupy large �compared to the particle size� volumes inside
the material, thereby leading to a segregated spatial distribu-
tion of the percolating phase. In practice, this can be
achieved when elements of two �mutually impenetrable� spe-
cies have different sizes and percolation is established by the
smaller elements. Particle-laden foams �5�, filled asphaltene
matrices �6�, and transport of macromolecules through po-
rous media �7� are just a few cases where segregation gov-
erns the microstructure. However, the most typical examples
of segregated systems are conductor-insulator composites
having conducting particle sizes much smaller than those of

the insulating regions �8–10�. These materials display critical
concentrations of a few percent or lower, which can be tuned
by the degree of segregation in the system.

From the theoretical standpoint, segregated percolating
composites represent an interesting class of interacting sys-
tems with an inhomogeneity length scale extending well be-
yond the characteristic size of the percolating objects. This
must be contrasted to classical interacting systems such as
hardcore, permeable, or sticking spheres models �3� where
morphological inhomogeneities are set by the percolating
particle sizes. However, despite the potential interest for both
application and fundamental research, very few results exist
on segregated percolation in the continuum �11�, while the
vast majority of studies is limited to lattice representations of
the segregated structure �9,12�, providing only a partial un-
derstanding of the percolation properties of segregated sys-
tems.

In this paper we consider a realistic continuum model of
segregated percolation, primarily aimed at describing the mi-
crostructure of segregated conductor-insulator composites,
but general enough to represent also other structurally simi-
lar systems. We show that, by varying the degree of segre-
gation of the system, the percolation threshold is generally
not a monotonous decreasing function of segregation, as sug-
gested by earlier studies �9,11,12�, but rather it displays a
minimum before maximum segregation is reached. Hence,
the optimal percolation threshold does not necessarily coin-
cide with the most segregated structure, leading to a more
complex phenomenology than previously thought.

We model a continuum segregated composite as schemati-
cally shown in Fig. 1�a�. Namely, we consider one kind of
impenetrable spherical particles of diameter d1, which may
refer to the conducting objects in a conductor-insulator com-
posite, and a second kind of �insulating� spherical particles
with diameter d2�d1, which we allow to penetrate each
other. Furthermore, to generate segregation, we assume that
the two species of particles are mutually impenetrable, and
that the voids left over from the two kinds of particles are
filled by the second �i.e., insulating� phase. Finally, the con-
nectivity criterion for the conducting phase is defined by
introducing a penetrable shell of thickness � /2 surrounding
each conducting sphere, so that two given particles are con-
nected if their penetrable shells overlap. This model repre-
sents a rather faithful description of real segregated compos-
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ites, such as the RuO2-glass systems �9,10�, where thermal
treatments on mixtures of RuO2 and glassy grains lead to
composites made of conducting RuO2 particles dispersed in
an insulating continuum. Segregation is induced by the larger
size of the original glassy grains compared to that of the
conducting particles. In our model, the insulating spheres are
treated as overlapping to simulate glass melting and sintering
during the firing process. Furthermore, in this and other simi-
lar classes of composites, electrical transport is given by di-
rect tunneling or hopping processes, defining a characteristic
length, represented by � in our model, below which two
conducting particles are electrically connected.

In our numerical simulations, the system described above
is generated by first placing randomly the insulating spheres
in a cube of edge length L with a given number density
�2=N2 /L3, where N2 is the number of spheres. The corre-
sponding volume fraction for L→� is �2=1−exp�−v2�2�,
where v2=�d2

3 /6 is the volume of a single insulating sphere
�3�. In a second step, N1 conducting �and impenetrable� par-
ticles of diameter d1 and number density �1=N1 /L3 are
added in the remaining void space and a Metropolis algo-
rithm is used to attain equilibrium �3�. In the following, for
the conducting phase, we shall use the reduced concentration
variable �1=�1��d1+��3 /6.

In the absence of insulating spheres ��2=0� the system so
generated coincides with the semipenetrable spheres model
�3,13,14�, where the conducting particles are dispersed ho-
mogenously through the entire volume. On the contrary, for
�2�0 the available volume fraction �avail for arranging the
conducting particles gets lowered by the presence of the in-
sulating spheres. By noticing that �avail=exp�−vexcl�2�,
where vexcl=��d2+d1�3 /6 is the excluded volume of an in-
sulating sphere, and by using the definition of �2 given
above, the available volume fraction is found to be

�avail = �1 − �2��1 + d1/d2�3
, �1�

which rapidly decreases as �2 and/or d2 /d1 increase, so that
a corresponding lowering of the critical density �1

c is ex-
pected in this case.

Let us now assess the above available volume argument
by a quantitative evaluation of the percolation threshold. For
given values of d2 /d1, �, and �2, and by using a modified
Hoshen-Kopelman algorithm �15�, we calculate as a function
of �1 and L the probability P��1 ,L� that a cluster of phase 1
spans the system in a given direction, with periodic boundary
conditions in the other two directions. The critical density
�1

c�L� for finite L is then extracted from the condition
P��1 ,L�=1 /2 �16�. Examples of the resulting percolating
clusters of the conducting phase for L=60 are shown in Fig.
1�b� for the homogeneous case ��2=0� and in Fig. 1�c� for a
segregated one with d2 /d1=12 and �2=0.89.

To obtain the critical density �1
c for L→� we use the

scaling relation �1
c�L�−�1

c 	L−1/
, where 
 is the correlation
length exponent obtained from the width of the transition.
We considered eight different system sizes ranging from
L=16 with Ns=1500 realizations to L=60 �Ns=100� for
d2 /d1=1 and from L=60 �Ns=200� to L=140 �Ns=100� for
d2 /d1=12. Twenty values of �1 were typically used to fit
P��1 ,L� with an appropriate function. In this way, for most
of the cases studied, the calculated 
 values were well within
5% of the universal value 
�0.88 �1�.

Typical spanning probability results are reported in Fig. 2,
where we plot P��1 ,L� for d2 /d1=4, �=d1, and for two val-
ues of �2 with few different system sizes. Compared to the
homogeneous case �2=0, the spanning probability transition
for �2�0 gets shifted to lower values of �1, indicating that
the percolation threshold is reduced by segregation. This
is confirmed by the scaling analysis described above, which
gives �1

c =0.3203�0.0003 for �2=0, which is in very
good accord with Refs. �13,14�, and �1

c =0.1821�0.0004 for
�2=0.65.

Although the reduction of �1
c shown in Fig. 2 has to be

expected on the basis of reduced available volume argument
given above, we find that, actually, �1

c is generally a nonmo-
notonous function of �2. This is shown in Fig. 3�a� where �1

c

is plotted as a function of �2 for �=d1 and for several values
of d2 /d1, and in Fig. 3�b� where d2 /d1=4 and � is varied. For
all cases studied, as a function of �2, the behavior of the
percolation threshold is characterized by an initial linear de-
crease of �1

c, followed by a minimum at a particular value of

d2

d1+δ

d1

(a)

FIG. 1. �Color� �a� Two-dimensional representation of the segregation model. The insulating spheres are represented by dashed circles,
while the conducting particles are depicted by filled circles. �b� Percolating cluster of the conducting phase for the homogeneous case
�2=0 and �c� for the segregated regime with d2 /d1=12 and �2=0.89. The conducting particles are plotted together with their penetrable
shells with �=d1. The color map defines the values of the connectivity number k for each particle �see text�.
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�2 which depends upon d2 /d1 and �, and a final increase
well before maximum segregation is reached at �

2
*. Lower

bounds of �
2
* are plotted in Fig. 3 by vertical dashed lines,

which are obtained by requiring that �avail �Eq. �1�� coincides
with the percolating volume fraction of voids �void

c , which
for the three dimensional penetrable sphere model used here
is �void

c �0.03 �17�.
As shown in Fig. 3�a�, the slope of the initial decrease of

�1
c is steeper for d2 /d1 larger, and the position of the mini-

mum gets shifted to higher values of �2. A similar effect is
found by decreasing the penetrable shell thickness � for fixed
d2 /d1, Fig. 3�b�, leading to infer that for � /d2→0 the mini-
mum disappears and �1

c decreases monotonously all the way
up to �

2
*. These features, and in particular the appearance of

a minimum �i.e., optimal� value of the percolation threshold
for finite penetrable shells, represent our main finding and
provide a previously unnoticed scenario for segregated per-
colation.

Let us discuss now the physical origin of the nonmonoto-
nous behavior of the percolation threshold. The initial de-
crease of �1

c can be fairly well reproduced by assuming that,
for low values of �2, the volume fraction �1

c of the compos-
ite conducting particles �hardcore plus penetrable shell� is
reduced by the volume occupied by insulating spheres. How-
ever, since the penetrable shells of the conducting particles
may actually overlap the insulating spheres, these latter may
be treated as having effectively a smaller volume veff�v2,
leading to �1

c��2���1
c�0��1−�2veff /v2�. Taking into account

that insulating particles with d2a, where a is the mean
distance between the closest surfaces of nearest neighbor
conducting particles, should be ineffective in reducing �1

c,
we approximate veff by a sphere of diameter d2−a. Finally,
by expanding �1

c��2� in powers of �1
c��2�−�1

c�0�, at the low-
est order in �2 we find

�1
c��2� � �1

c�0� −
�1

c�0�
�1

c�0��
�d2 − a

d2
�3

�2, �2�

where �1
c�0��=lim�2→0 ��1

c��2� /��1. As it is seen in Fig. 3,
where Eq. �2� �dotted lines� is plotted by using a= �d1
+�� /2�1

c�0�1/3−d1 �14� and �1�0� as given in Ref. �3�, the
low �2 behavior of �1

c is rather well reproduced for all cases
considered.

By construction, the above argument neglects possible ef-
fects of �2�0 on the connectivity number k, i.e., the number
of conducting particles directly connected to a given one.
Actually, as it is shown in Fig. 1 where the color map defines
k for each particle in the percolating cluster, the rather nar-
row k distribution for the homogeneous case, which is
peaked around the mean value �k	�2.25 �13�, changes dras-
tically in the highly segregated regime of Fig. 1�c�. Here,
clusters of highly connected particles �k large� are bound
together by “chains” of particles having low k values. Such
distribution of k values is due to the fact that, in the vicinity
of �

2
*, the structure of the void space available for arranging

the centers of the conducting particles is characterized by

FIG. 3. �Color online� Percolation threshold values �1
c as a func-

tion of the volume fraction �2 of the insulating spheres for �a�
�=d1 and several values of d2 /d1 and �b� d2 /d1=4 and few values
of �. The vertical dashed lines are lower bounds of the maximum
segregation obtained from Eq. �1�, while the dotted lines are from
Eq. �2�.

FIG. 4. �Color online� Mean connectivity number �k	 as a func-
tion of �2 for the same cases of Fig. 3�a�.

FIG. 2. �Color online� Spanning probability as a function of �1

for a few values of the system linear size L and for two different
values of insulating phase volume fraction �2. The penetrability
length is �=d1 and d2 /d1=4.
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many narrow �quasi-one-dimensional� necks connecting
more extended void regions �18�. Percolation is possible only
if such necks are populated by connected conducting par-
ticles, and since for �2→�

2
* the necks become narrower, and

so have less probability of being populated, more particles
are needed to ensure connectivity, thereby “overcrowding”
the many void regions between the necks. The net effect of
such mechanism, not captured by Eq. �2�, is the enhancement
of �1

c as �2→�
2
*. This is demonstrated in Fig. 4 where �k	,

plotted for the same cases of Fig. 3�a�, displays a sudden
enhancement �more marked for d2 /d1 larger� at values of �2
corresponding to the points of upturn of �1

c of Fig. 3�a�. The
competition between the effect of reduced available volume,
which lowers �1

c �Eq. �2��, and the enhanced connectivity at
high segregation, which increases �1

c, is therefore at the ori-
gin of the minimum percolation threshold observed by us.

Before concluding, let us discuss the possibility of ob-
serving the features presented here in real segregated mate-

rials. In conductor-insulator composites where transport is
driven by tunneling, � represents the maximum tunneling
distance between the conducting particles, so that � would be
of the order of few nanometers. For such values of �, the
results of Fig. 3 would therefore apply to nanocomposites
with d1
� and d2 not exceeding a few tens of nanometers.
Much larger values of � are, however, possible in some
RuO2-glass composites, where a reactive layer of thickness
0.2–0.4 �m �or even more� surrounding the RuO2 particles
presents modified chemical and structural properties �19�,
most probably favoring hopping processes �20�. In this case,
the parameters used in our work would easily account for
composites with d1 in the range 50–500 nm and d2 of few
microns.
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